Vanderbilt exoskeleton

From Infogalactic: the planetary knowledge core
Jump to: navigation, search
Indego
Manufacturer Vanderbilt University
Parker Hannifin
Country United States
Year of creation 2010 (prototype)
Type Powered exoskeleton
Purpose Medical

The Vanderbilt exoskeleton, marketed as Indego,[1][2] is a powered exoskeleton designed by the Center for Intelligent Mechatronics at Vanderbilt University in the U.S. state of Tennessee.[3][4] It is intended to assist paraplegics, stroke victims and other paralyzed or semi-paralyzed people to walk independently.[5] Motion and control technologies manufacturer Parker Hannifin is funding further development, and plans to release the first commercial version of the exoskeleton in 2015.[6][7]

Rationale

In 2012, there were estimated to be over 270,000 Americans with long-term spinal cord injuries, of whom around 21 percent suffer from complete paraplegia.[8] The lifetime cost of care and lost productivity for each paraplegic ranges from US$1.4 million to $2.2 million.[8] However, since the late 2000s, robotics and battery technology have become sufficiently advanced to make wearable walking assistance devices viable.[9][10]

Design

The Vanderbilt exoskeleton weighs 27 pounds (12 kg) and can support users weighing up to 200 pounds (91 kg).[3][4] It is strapped to the user's legs, and uses an onboard computer to detect the user's movements, which are then supported and amplified by battery-powered motors in the exoskeleton's hip and knee joints.[5] It also uses functional electrical stimulation to enervate the muscles of paralyzed patients, improving their strength and circulation,[11] and can be quickly disassembled for removal.[12] It can be used interchangeably with a wheelchair, and can be donned without assistance, allowing disabled individuals significantly greater independence.[5] It is compact enough for a person to sit in a normal chair without needing to remove the exoskeleton.[12]

Development

Vanderbilt University began testing its exoskeleton with paraplegics and medical experts at a rehabilitation center in Atlanta, Georgia, in 2010.[12] In October 2012, Parker Hannifin signed an exclusive licensing agreement with Vanderbilt University for the right to develop and manufacture a commercial version of the exoskeleton, which it plans to release under the name Indego.[6][1] Whereas current commercial exoskeletons can cost as much as $140,000, Parker Hannifin hopes to exploit its manufacturing capabilities and the Vanderbilt model's lightweight design to ensure that the Indego is significantly cheaper.[5] In March 2014, Parker Hannifin entered into clinical trial agreements for the exoskeleton with several major medical rehabilitation centres.[7] In December 2014, Parker Hannifin invested in Freedom Innovations, a California-based prosthetic technology company with which it had a pre-existing partnership, to further the development of Indego.[13] Following regulatory approval, Parker Hannifin plans to release Indego in Europe in 2015 and in the United States in 2016.[7]

See also

References

  1. 1.0 1.1 Lua error in package.lua at line 80: module 'strict' not found.
  2. Lua error in package.lua at line 80: module 'strict' not found.
  3. 3.0 3.1 Lua error in package.lua at line 80: module 'strict' not found.
  4. 4.0 4.1 Lua error in package.lua at line 80: module 'strict' not found.
  5. 5.0 5.1 5.2 5.3 Lua error in package.lua at line 80: module 'strict' not found.
  6. 6.0 6.1 Lua error in package.lua at line 80: module 'strict' not found.
  7. 7.0 7.1 7.2 Lua error in package.lua at line 80: module 'strict' not found.
  8. 8.0 8.1 Lua error in package.lua at line 80: module 'strict' not found.
  9. Lua error in package.lua at line 80: module 'strict' not found.
  10. Lua error in package.lua at line 80: module 'strict' not found.
  11. Lua error in package.lua at line 80: module 'strict' not found.
  12. 12.0 12.1 12.2 Lua error in package.lua at line 80: module 'strict' not found.
  13. Lua error in package.lua at line 80: module 'strict' not found.

External links