Harmonic progression (mathematics)

From Infogalactic: the planetary knowledge core
Jump to: navigation, search

<templatestyles src="Module:Hatnote/styles.css"></templatestyles>

In mathematics, a harmonic progression (or harmonic sequence) is a progression formed by taking the reciprocals of an arithmetic progression. In other words, it is a sequence of the form

 1/a ,\ \frac{1}{a+d}\ , \frac{1}{a+2d}\ , \frac{1}{a+3d}\ , \cdots, \frac{1}{a+kd},

where −a/d is not a natural number and k is a natural number.

(Terms in the form  \frac{x}{y+z}\ can be expressed as  \frac{\frac{x}{y}}{\frac{y+z}{y}} , we can let  \frac{x}{y}=a and  \frac{z}{y}=kd .)

Equivalently, a sequence is a harmonic progression when each term is the harmonic mean of the neighboring terms.

It is not possible for a harmonic progression (other than the trivial case where a = 1 and k = 0) to sum to an integer. The reason is that, necessarily, at least one denominator of the progression will be divisible by a prime number that does not divide any other denominator.[1]

Examples

12, 6, 4, 3, \tfrac{12}{5}, 2, … , \tfrac{12}{1+n}
10, 30, −30, −10, −6, − \tfrac{30}{7}, … , \tfrac{10}{1-\tfrac{2n}{3}}

Use in geometry

If collinear points A, B, C, and D are such that D is the harmonic conjugate of C with respect to A and B, then the distances from any one of these points to the three remaining points form harmonic progression.[2][3] Specifically, each of the sequences AC, AB, AD; BC, BA, BD; CA, CD, CB; and DA, DC, DB are harmonic progressions, where each of the distances is signed according to a fixed orientation of the line.

See also

References

  1. Lua error in package.lua at line 80: module 'strict' not found.. As cited by Lua error in package.lua at line 80: module 'strict' not found..
  2. Chapters on the modern geometry of the point, line, and circle, Vol. II by Richard Townsend (1865) p. 24
  3. Modern geometry of the point, straight line, and circle: an elementary treatise by John Alexander Third (1898) p. 44
  • Mastering Technical Mathematics by Stan Gibilisco, Norman H. Crowhurst, (2007) p. 221
  • Standard mathematical tables by Chemical Rubber Company (1974) p. 102
  • Essentials of algebra for secondary schools by Webster Wells (1897) p. 307

<templatestyles src="Asbox/styles.css"></templatestyles>