Tryptophol
![]() |
|
Names | |
---|---|
IUPAC name
2-(1H-Indol-3-yl)ethanol
|
|
Other names | |
Identifiers | |
526-55-6 ![]() |
|
ChEBI | CHEBI:17890 |
ChEMBL | ChEMBL226545 |
ChemSpider | 10235 |
Jmol 3D model | Interactive image |
PubChem | 10685 |
|
|
Properties | |
C10H11NO | |
Molar mass | 161.20 g·mol−1 |
Melting point | 59 °C (138 °F; 332 K) |
Vapor pressure | {{{value}}} |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
|
|
Infobox references | |
Tryptophol is an aromatic alcohol that induces sleep in humans. It is formed in the liver after disulfiram treatment.[1] It is also produced by the trypanosomal parasite in sleeping sickness.
It is also found in wine as a secondary product of alcoholic fermentation. It was first described by Felix Ehrlich in 1912.
Contents
Natural occurrences
Tryptophol can be found in Pinus sylvestris needles[2] or seeds.[3]
It is produced by the trypanosomal parasite (Trypanosoma brucei) in sleeping sickness (African trypanosomiasis).[1][4]
It is found in wine[5] or in beer (although at levels of <23 mg/L in Canadian beers[6] as a secondary product of alcoholic fermentation[7] (a product also known as congener) by Saccharomyces cerevisiae.
It is also an autoantibiotic produced by the fungus Candida albicans.[8]
It can also be isolated from the marine sponge Ircinia spiculosa.[9]
Metabolism
Biosynthesis
It was first described by Felix Ehrlich in 1912. Ehrlich demonstrated that yeast attacks the natural amino acids essentially by splitting off carbon dioxide and re-placing the amino group with hydroxyl. By this reaction, tryptophan gives rise to tryptophol.[10] Tryptophan is first deaminated to 3-indolepyruvate. It is then decarboxylated[11] to indole acetaldehyde by indolepyruvate decarboxylase. This latter compound is transformed to tryptophol by alcohol dehydrogenase.[12]
It is formed from tryptophan, along with indole-3-acetic acid in rats infected by Trypanosoma brucei gambiense.[13]
An efficient conversion of tryptophan to indole-3-acetic acid and/or tryptophol can be achieved by some species of fungi in the genus Rhizoctonia.[14]
Biodegradation
In Cucumis sativus (cucumber), the enzymes indole-3-acetaldehyde reductase (NADH) and indole-3-acetaldehyde reductase (NADPH) use tryptophol to form (indol-3-yl)acetaldehyde.[15]
Glycosides
The unicellular alga Euglena gracilis converts exogenous trytophol to two major metabolites: tryptophol galactoside and an unknown compound (a tryptophol ester), and to minor amounts of indole-3-acetic acid, tryptophol acetate and tryptophol glucoside.[16]
Biological effects
Tryptophol and its derivatives 5-hydroxytryptophol and 5-methoxytryptophol, induce sleep in mice. It induces a sleep-like state that lasts less than an hour at the 250 mg/kg dose.[17] These compounds may play a role in physiological sleep mechanisms.[18] It may be a functional analog of serotonin or melatonin, compounds involved in sleep regulation.
Tryptophol shows genotoxicity in vitro.[19]
Tryptophol is a quorum sensing molecule for the yeast Saccharomyces cerevisiae.[20] It is also found in the bloodstream of patients with chronic trypanosomiasis. For that reason, it may be a quorum sensing molecule for the trypanosome parasite.[19]
In the case of trypanosome infection, tryptophol decreases the immune response of the host.[21]
As it is formed in the liver after ethanol ingestion or disulfiram treatment, it is also associated with the study of alcoholism.[1][17] Pyrazole and ethanol have been shown to inhibit the conversion of exogenous tryptophol to indole-3-acetic acid and to potentiate the sleep-inducing hypothermic effects of tryptophol in mice.[22]
It is a growth promoter of cucumber hypocotyl segments.[23] The auxinic action in terms of embryo formation is even better for tryptophol arabinoside on Cucurbita pepo hypocotyl fragments.[24]
Precursor for synthesis of other compounds
Tryptophol has been used as precursor in the synthesis of tryptamines like DMT.[25]
It is used in the synthesis of the drug indoramin.
See also
References
<templatestyles src="Reflist/styles.css" />
Cite error: Invalid <references>
tag; parameter "group" is allowed only.
<references />
, or <references group="..." />
- ↑ 1.0 1.1 1.2 Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found. (Article in French)
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Pathway: tryptophan degradation VIII (to tryptophol) at BioCyc.org
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ 17.0 17.1 Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ 19.0 19.1 Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.